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Abstract

We report that the Connected Set Cover (CSC)
problem is just a special case of the Group Steiner
Tree (GST) problem. Based on that we obtain the
first algorithm for CSC with polylogarithmic ap-
proximation guarantee as well as the first approx-
imation algorithms for the weighted version of the
problem and the version with requirements. More-
over, we argue that the inapproximability result of
GST will carry on to the weighted version of the
CSC problem.
Keywords: set cover, connected set cover,

weighted connected set cover, group Steiner Tree,
node weighted group Steiner Tree, covering Steiner
Tree problem

1. Introduction

Let U be the universe of elements, S family of sub-
sets of U such that

⋃
S∈S S = U and G = (S, E)

connected graph on vertex set S. We say that sub-
family R ⊆ S is set cover with respect to the in-
stance (U,S) if every u ∈ U is covered by at least
one set from R. The set cover problem introduced
by Chvátal [5] is to find the subfamily R of mini-
mal size. The more general version of the problem
is typically called the weighted set cover problem
where each set from family S has a nonnegative
weight associated with it. The task then is to find
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the minimum weight subfamily of sets which covers
entire universe U .

A connected set cover with respect to the in-
stance (U,S, G) is a set cover R with respect to
(U,S) such that the subgraph G[R] induced by
R is connected. The connected set cover problem
(CSC) on (U,S, G) is a problem of finding a con-
nected set cover with respect to (U,S, G) with min-
imum number of sets (vertices). Analogously to the
weighted version of the set cover problem, we define
the weighted connected set cover problem (WCSC)
with the task of computing the connected set cover
with minumum weight subfamily of sets (vertices).

In this paper we will study the relation of CSC
and WCSC and well-studied Group Steiner Tree
(GST) problem introduced by Reich and Widmayer
[14] motivated by the problem of wire routing with
multiport terminals in physical VLSI design. Let
G = (V,E) denote a graph with edge weight func-
tion w : E → R+ and family of subsets of ver-
tices G = {g1, g2, . . . , gk}, gi ⊂ V which will be
called groups. The task is to find a subtree T that
minimizes the cost function

∑
e∈E w(e) such that

V (T ) ∩ gi 6= ∅ for all i ∈ {1, . . . , k}. This prob-
lem is called the Group Steiner Tree problem with
respect to the instance (G,G, w). We fix the fol-
lowing notations: k = |G|, N = max1≤i≤k |gi| and
n = |V |.

It’s well known that GST is at least as hard as the
set cover problem. Namely, it can be shown that
the set cover can be reduced to GST by building
a star graph with leaves that corresponds to the
sets from S and each group corresponds to exactly
one element from U . All sets (leaves) covering one
(fixed) element belong to the same group. Weights
of edges can be defined as weights of set that are
connecting particular sets to the root of the star
graph (Figure 1.1).
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Figure 1.1: Reduction of set cover to GST problem

1.1. Previous work

CSC has been independently investigated from
GST by several papers before. In fact, the main
motivation for introducing the connectivity require-
ment in classical set cover came from biology,
namely from the problem of reserve selection for
conservation of species (see [3]). Cerdeira and Pinto
[3] formally introduced the CSC problem and stud-
ied some valid inequalities for the convex hull of the
set of incidence vectors of connected covers.

Shuai and Hu [15] gave two polynomial algo-
rithms for CSC problem on graph where each ver-
tex has degree less than or equal to 2 and proved
that for any 0 < ρ < 1 there is no approxi-
mation algorithms with approximation ratio ρ lnn
for CSC problem on graphs where at most one
vertex has degree greater than 2, unless NP ⊂
DTIME(npoly logn).

In the paper by Zhang, Gao and Wu [16] first two
approximation algorithms for CSC are given. First
algorithm is a combination of approximation algo-
rithms for set cover and Steiner tree with minimum
number of Steiner points with approximation ratios
of α and β, respectively. In the first phase of algo-
rithm the set cover is computed with the approxi-
mation ratio α. In the second phase, Steiner tree
with minimum number of Steiner points is com-
puted on the set cover from the first phase in order
to resolve eventual disconnectedness. It was proved
that the described algorithm has approximation ra-
tio of α + β + αβ(Dc − 1) where Dc is the length
of the longest path in graph G between two non-
disjoint sets. Second algorithm Zhang et al. [16]

describe uses the greedy strategy that generalizes
the greedy algorithm of set cover with the approx-
imation ratio of 1 +DcH(γ − 1) where H(·) is the
harmonic function and γ = max {|S| : S ∈ S}.

Note that theoretically both algorithms do not
provide a very good bounds since Dc can grow as
large as O(n), as we demonstrate with the following
example.

Example 1..1. Suppose that n ∈ N is even and
n ≥ 6. Universe U is given by U = {1, 2, . . . , n}
and S = {S1, . . . , Sn} where S1 = {1, 2, . . . , n/2 +
1}, Sn/2 = {1, 2, . . . , n/2}, Sn/2+1 = {n/2 +
1, . . . , n}, Sn = {n/2 − 1, n/2, . . . , n} and Si =
{i − 1, i} for 1 < i < n/2 and n/2 + 1 < i < n.
Graph G = (V (G), E(G)) is given by V (G) = S
and E(G) = {{Si, Si+1} : 1 ≤ i ≤ n− 1} (see Fig-
ure 1.2). Optimal solution is R∗ = {Sn/2, Sn/2+1}.
However, the approximation algorithms of Zhang
et al. will be forced to pick either S1 or Sn and
the mechanisms they use to overcome possible dis-
connectedness will incure O(n) additional sets (ver-
tices).

S1
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Sn
2

Sn
2 +1

Sn−1

Sn

Figure 1.2: Bad example for the approximation al-
gorithms proposed by Zhang et al.

On the other hand, GST is an older and more
studied problem. Grag, Konjevod and Ravi [8]
gave first polylogarithmic approximation algorithm
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which with high probability finds a group Steiner
tree of cost within O(logN log n log log n log k) of
the cost of the best group Steiner tree. Using a
randomized approach, they solved the problem on
trees with the approximation ratio of O(log k logN)
which they extend to general graphs by probabilis-
tic approximation of metric spaces due to Bartal [2].
Some generalizations of GST has also been stud-
ied. Khandekar et al. [11] gave approximation algo-
rithms for Fault-Tolerant Group-Steiner Problems.
In their work they address the node-weighted GST
problem with both node and edge weights on graph
G and provide the O(

√
m logm) approximation al-

gorithm for that problem where m is a number of
vertices in graph G. Konjevod, Ravi and Srini-
vasan [12] considered the GST were each group in
G has a nonnegative integer requirement associated
with it. They provide the polylogarithmic approxi-
mation algorithm for the problem of determining a
minimum-weight tree spanning at least the required
number of vertices of every group.

Very recently Naor et al. [13] presented a very
interesting quasi-polynomial-time randomized on-
line algorithm for the node-weighted GST problem
with a polylogarithmic competitive ratio.

1.2. Our results

In this paper we show that CSC is just a special
case of GST. Namely, we show that CSC and GST
where all edge weights are set to 1 are equivalent
problems. Although the reduction works in both
direction, we will mainly exploit the fact that we
can transform CSC instance to equivalent GST in-
stance, find the solution of GST by some of the
known algorithms, and transform the solution back
to CSC. Doing so will immediately imply the better
approximation algorithms for the CSC, WCSC and
the generalization of CSC with requirements.

More precisely, results of Garg, Konjevod and
Ravi [8] imply polylogarithmic approximation al-
gorithm for connected set cover with approxima-
tion ratio O(log2m log logm log n) where is n = |U |
and m = |S|. The algorithms of Khandekar et
al. [11] will be used to approximate the weighted
CSC no more than O(

√
m logm) times optimal.

Note that this is the first algorithm with approxi-
mation guarantee for the WCSC problem1. Note

1Zhang et al. [16] left the weighted variant of CSC as an

that the recent results of Naor et al. [13] pro-
vide the first algorithm with polylogarithmic ap-
proximation guarantee. Their algorithm is on-
line (i.e. does not need any knowledge of family
G = {g1, g2, . . . , gk}, gi ⊂ V in advance). How-
ever, it runs only in quasi-polynomial running time.

Finally, the results of Konjevod, Ravi and Srini-
vasan [12] will be used to solve CSC with require-
ments re ∈ N, where each element e ∈ U has to be
covered at by at least re sets.

2. CSC is just a special case of
GST

Here we prove our main result, i.e. CSC problem is
equivalent to GST problem with all edge weights set
to 1. We do that by showing that WCSC is equiv-
alent to the GST problem with all edge weights set
to 1 and nonnegative weights associated to graph
nodes. Precise definitions follows.

Definition 2.1 (Weighted Connected Set Cover
(WCSC)). Given a set U of elements, S a family
of subsets of U , graph G such that V (G) = S and
wN : S → R+, find a subfamily R of S such that
every element of U is covered by at least one set of
R, subgraph G[R] of G induced by R is connected
and

∑
S∈R wN (S) is minimized.

Definition 2.2 (Node weighted Group Steiner
Tree). Suppose that we are given a graph G with
node-weight function wN : V (G)→ R+ and family
of subsets of vertices G = {g1, g2, . . . , gk}, gi ⊂ V
which will be called groups. We have to find sub-
tree T that minimizes cost function

∑
v∈V (T ) wN (v)

such that V (T ) ∩ gi 6= ∅ for all i ∈ {1, . . . , k}.

In the following we prove that above two prob-
lems are equivalent.

Theorem 2.1. Suppose that (U,S, G,wN ) and
(G,G, wN ) are instances of WCSC and node-
weighted GST, respectively. We can reduce WCSC
to node-weighted GST and conversely, i.e these
problems are equivalent.

Proof. We are given an instance (U,S, G,wN ) of
WCSC. Let define G = {gu}u∈U such that

open problem.
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gu = {S ∈ S : u ∈ S}. (2.1)

The instance (G,G, wN ) of node-weighted GST
is obtained. If T is a solution subtree, we can
check that R = {Sv : v ∈ V (T )} is solution of
our WCSC problem. Indeed, G[R] is connected
minimum weighted subgraph of G that covers all
elements of universe U . Since T is tree, it follows
that G[R] is connected. First, we check covering
constraint. Suppose that there is at least one ele-
ment u′ such that it is not covered by no one el-
ement of R. It means that for every S ∈ R we
have that u′ 6∈ S. By (2.1) it follows that there is
gu′ such that there are no vertices in T that are in
group gu′ . It is contradiction to feasibility of T in
node-weighted GST. Second, suppose that there is
a better solution R′ such that wN (R′) < wN (R).
Now, we can construct tree T ′ by cycle deletion
such that wN (T ′) < wN (T ) and V (T ′) ∩ g 6= ∅
which contradicts optimality of T .

Now, we will prove that node-weighted GST is
reducible to WCSC. The instance (G,G, wN ) of
node-weighted GST is given. Let U = G and
S = {Sv}v∈V (G) such that

Sv = {g ∈ U : v ∈ g}, v ∈ V (G). (2.2)

The instance (U,S, G,wN ) is obtained. If R is
optimal node weighted connected cover, we can
check that tree T = (R, E(T )) is optimal solution
to the node weighted GST problem, where E(T ) is
obtained from E(G[R]) by cycle deletion. In other
words, we claim that T is minimum weight subtree
that includes at least one vertex from each group. If
there is one uncovered group there is one uncovered
element in solution of WCSC. If we suppose that
there is another tree T ′ such that wN (T ′) < wN (T )
and V (T ′) ∩ g 6= ∅ for all g ∈ G, that it follows
that R′ = {Sv}v∈V (T ′) is connected cover such that
wN (R′) < wN (R). It contradicts optimality of R.
�

Clearly, CSC is a special case of WCSC where
wN (v) = 1 for all v ∈ V (G). Similarly (as in The-
orem 2.1), it can be proved that CSC problem is
equivalent to the GST problem where all edges have
equal weights (i.e. w(e) = 1 for all e ∈ E(G)).

Theorem 2.2. CSC and GST with all edge weights
equal to 1, are equivalent. In other words, any CSC

instance can be reduced to GST instance and vice
versa.

2.1. Algorithms for (W)CSC
Garg et al. in [8] proved the following theorem.

Claim 2.1. For any ε > 0, there is a polynomial-
time algorithm that with probability 1−ε finds group
Steiner tree whose cost is

1. O(logN log k) times the cost of the optimal
tree, if the input graph is a tree;

2. O(logN log n log log n log k) times the cost of
the optimal tree on general graphs.

By Theorem 2.2, the same algorithm can be used
to solve the CSC problem by reducing the CSC to
equivalent GST problem first. Hence, the polylog-
arithmic approximation algorithm for CSC is ob-
tained.

Khandekar et al. in [11] studied fault-tolerant
versions of group Steiner tree problem. Given (di-
rected or undirected) a graph G with edge or node
weights, a root vertex r ∈ V (G) and a collec-
tion of groups G = {g1, . . . , gk} that are subsets
of V (G)\{r}, the task is to find a minimum weight
subgraph H of G that contains two edge or vertex-
disjoint paths from each group g ∈ G to the root
r.

They proved the following theorem.

Claim 2.2. There is a polynomial-time algorithm
that approximates within O(

√
n log n) the fault-

tolerant version of group Steiner tree problem.

We can use algorithms provided in [11] to solve
the WCSC problem, since that is, by our knowl-
edge, the only algorithm with approximation guar-
antee known that can be used to approximate the
node-weighted GST problem. The algorithm is
more precisely stated below.

Since reduction in the proof of Proposition 2.1
defines group gu for each element u ∈ U in (2.1), it
follows that number groups in node-weighted GST
will be equal to number of elements in U , more
precisely k = |U | = n. Maximal group size in
node-weighted GST can be viewed as the maximal
number of sets in S which cover some fixed element
u ∈ U in WCSC instance. Hence, N ≤ m where
m = |S|.

Algorithm 2.1. returns WCSC whose weight is
less O(

√
m logm) times the optimal.
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Algorithm 2.1.: Algorithm for WCSC
Input: universe U , family of sets S, graph G,

node weight function wN
Output: connected cover R
transform WCSC instance to equivalent
node-weighted GST instance (G,G, wN ) as in
the proof of Proposition 2.1;
for r ∈ V (G) do

Find subgraph H using algorithm of
Khandekar et al. which contains two
vertex-disjoint paths from root r to each
group g ∈ G;

take the subgraph H which has a minimal
weight;
return family {Sv ∈ S : v ∈ V (H)};

2.2. Algorithms for (W)CSC on
trees

Note that the first part of Claim 2.1 together with
Theorem 2.2 imply the O(logm log n) algorithm for
CSC if the input graph is a tree.

When the input graph is a node weighted tree,
the node-weighted GST can as well be substantially
better approximated. Namely, it can be shown that
any node weighted input tree can be transformed
into an equivalent edge weighted tree. These trees
have the same solution subtree as we shown in the
following theorem.

Theorem 2.3. Suppose that T is node weighted
tree with node weight function wN : V (T ) → R+

and root r. The instance of node-weighted GST
problem is denoted by (T,G, wN , r). There is a
tree T ′ with edge weight function wE : E(T ′) →
R+ such that the optimal solution of an instance
(T,G, wN , r) can be reconstructed from optimal so-
lution of an instance (T ′,G, wE , r) in polynomial
time.

Proof. We can take V (T ′) = V (T )∪{r′} where r′
is the copy of root r, wN (r′) = wN (r) and E(T ′) =
E(T )∪{{r, r′}}. We define function wE : E(T ′)→
R+ such that

wE(pe(v)) = w(v), v ∈ V (T ′) \ {r},

where pe(v) denotes parental edge of v ∈ V (T ′) \
{r}. T ∗ is optimal solution subtree of (T ′,G, wE , r).

If we take vertices of T ∗ and induce subtree of T on
these vertices (if r′ ∈ V (T ∗) we will take root r),
we will obtain subtree whose node weight is equal
to the edge weight of T ∗. Obviously, it is optimal
solution of (T,G, wN , r) since each another subtree
T ′′ such that wN (T ′′) < wN (T ∗) contradicts opti-
mality of T ∗ in (T,G, wE , r) instance. �

By the first part of Claim 2.1 and Theorem 2.2
it follows that WCSC can be solved within the ap-
proximation ratio of O(logm log n) when the input
graph is a tree.

2.3. Connected set cover problem
with requirements

Zhang et al. in [16] introduced the fault-tolerant
connected set cover problem with the uniform re-
quirement m. Solution R is (k,m)-CSC if it in-
duces k-connected subgraph of G and each element
u ∈ U is covered by at least m subset. They
gave approximation algorithm for (2,m)-CSC that
has performance (PD(G)− 1)(1 +H(γ− 1)) where
PD(G) is the maximum length of a path in graph
G with internal vertices of degree two. Note that
this guarantee can again be as bad as O(n). In
this section we generalize the (1,m)-CSC problem
where each element u ∈ U has arbitrary noneg-
ative integer requirement ru and show that such
problem can be solved in polylogarithmic approxi-
mation ratio by using result of Konjevod et al. [12]
for Covering Steiner Tree problem (CST).

Definition 2.3 (Covering Steiner Tree problem -
(CST)). Suppose that we are given a graph G with
edge-weight function wE : V (G) → R+ and family
of subsets of vertices G = {g1, g2, . . . , gk}, gi ⊂
V which will be called groups. We have to
find the subtree T that minimizes a cost function∑
e∈E(T ) wE(e) such that V (T ) ∩ gi 6= ∅ for all

i ∈ {1, . . . , k} and V (T ) contains at least kg ver-
tices from each group g ∈ G. Number kg is called
the requirement of group g ∈ G and K = {kg ∈ N :
g ∈ G, kg ≤ |g|} is set of all requirements.

Konjevod et al. in [12] solved CST when the in-
put graph is a tree using the technique of LP relax-
ation and randomized rounding described in [8] and
obtained a randomized polynomial-time approxi-
mation algorithm for the covering Steiner prob-
lem on trees, which with constant probability pro-
duces a solution of value at most O(logN log(K ·k))
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times optimal, where K is the largest requirement.
Using Bartal approximation of metric spaces they
extended their algorithm to general graphs with
the cost of introducing an additional stretch of
O(log n log log n) where is n = |V (G)|. Hence, they
compute with high probability CST of cost not
more then O(log n log log n logN log(K · k)) times
the cost of the optimal tree.

In the following, we provide the formal definition
of CSC problem with requirements.

Definition 2.4 (Connected set cover problem with
requirements - (CSC-R)). Given a set U of ele-
ments, S a family of subsets of U and graph G such
that V (G) = S, find a minimum size subfamily R
of S such that every element of U is covered by at
least ru sets in R and subgraph G[R] of G induced
by R is connected. Number ru ∈ N is called require-
ment for element u ∈ U . Set of all requirements is
denoted by P.

Reduction from CSC-R problem to CST prob-
lem, where all edges have equal weights, can be
performed in same way as in Proposition 2.1. Re-
quirement ru of elements u ∈ U will be requirement
of corresponding groups gu that consist of all sets
that cover element u. On the other hand, require-
ment kg of group g ∈ G will be requirement of the
element g in CSC-R problem.

Theorem 2.4. CSC-R is equivalent to the CST
problem where all edges in the graph G have equal
weights.

As a result the algorithm of Konjevod et al.
applies for CSC-R problem in order to compute
the solution of CSC-R whose value is at most
O(log2m log logm log(R ·n)) where R is the largest
requirement. Size of the largest group in CST prob-
lem corresponds to the largest number of sets from
S that cover some fixed element u ∈ U .

3. Inapproximability of CSC
Halperin and Krauthgamer [9] gave polylogarith-
mic inapproximability result for the GST problem.
More precisely, they proved that for every fixed
ε > 0 the GST admits no efficient log2−ε n ap-
proximation, where n denotes the input size, un-
less NP ⊆ ZTIME(npolylog(n)). That holds even
for Hierarchically Well-Separated Trees (HST), and

hence for general trees as well. Since node weighted
GST on trees is reducible to GST on trees (see The-
orem 2.3) , it follows that same inaproximability re-
sult holds for node weighted GST when input graph
is a tree. By Theorem 2.1, it follows that weighted
CSC is also Ω(log2−ε n)- hard, for all ε > 0, even
when the input graph is a tree.

Theorem 3.1. Weighted Connected Set Cover
problem is Ω(log2−ε n)-hard, for all ε > 0.

4. Conclusion

In this paper we found relation between two combi-
natorial problems, Connected Set Cover and Group
Steiner Tree. Doing so, we are the first one to ar-
gue that the CSC problem can be approximated
within the polylogarithmic approximation ratio.
By similar arguments we gave the first algorithm for
weighted version of CSC that has been raised as an
open and interesting problem in [16]. Very recent
results by Naor et al. [13] raise an interesting ques-
tion whether there exist a polynomial algorithm for
an on-line variant of the (weighted) CSC problem
with a polylogarithmic approximation guarantee.

Inaproximability results showed that the
weighted CSC problem is Ω(log2−ε n)-hard.
However, it is still not clear whether the same
inapproximability results holds for CSC. Note that
obtaining a better bounds for CSC will immedi-
ately imply a bounds for GST with uniform edge
weights (e.g. all edge weights are one) and vice
versa. It is worth mentioning that the construction
of Halperin and Krauthgamer [9] uses information
of edge weights and the same approach cannot be
used for GST with uniform edge weights.
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